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INTRODUCTION
Electrophysical agents (EPAs) can reduce pain and in-
flammation, accelerate tissue healing and improve func-
tion (1,2). Several of these benefits relate to thermo-
physiological responses such as changes to blood flow, 
muscle tone and tissue compliance induced by tissue 
hyperthermia (3-6).

The physical nature and metabolic state of tissues can 
be altered by changes in blood flow and tissue extensi-
bility in patients and in non-clinical situations. In phy-
siotherapy, radiofrequency (RF)-based EPAs are among 
those that claim to increase blood flow and improve soft 
tissue compliance, mainly by inducing tissue hyperther-
mia (9-15). Measures relating to blood flow and tissue 
compliance closely reflect the body’s response when 
tissues are exposed to heat (16-18).

The RF frequency ranges used in physiotherapy are 
largely limited to 30 kHz–30 MHz (23–26). Within this 
range, the main EPA used is shortwave therapy (SWT), 
which commonly operates at 27.12 MHz, either in conti-
nuous (CSWT) or pulsed (PSWT) mode although it is lar-
gely limited to PSWT in contemporary practice (25,27). 
Nonetheless, EPAs employing significantly lower fre-
quency RFs (<1 MHz) have also been reported, such as 
a capacitive resistive monopolar RF (CRMRF) that em-
ploys RF at 448 kHz.

The CRMRF differs from SWT mainly in: the operating 
frequency and secondly, unlike SWT it cannot be delive-
red to the tissues through an air gap, needing a coupling 
medium.

This study aimed to investigate the deep blood flow and 
tissue extensibility responses to continuous mode CR-
MRF therapy vs PSWT in asymptomatic adults.

Although CRMRF is a continuous-mode therapy unlike 
PSWT, comparison of these two EPAs was done on the 
basis that PSWT is the most relevant comparator to CR-
MRF in contemporary therapy. Since CRMRF was shown 
to substantially increase and sustain skin temperature 
(16), it was hypothesized that similar significant effects 
may be obtained on deep blood flow and tissue exten-
sibility.

MATERIALS AND METHODS
Crossover study conducted on 17 asymptomatic adults.

Sample and groups. All the participants had normal skin 
thermal perception and no contra-indications. All atten-
ded four experimental conditions: CRMRF high (ther-
mal), CRMRF low (sub/minimally thermal) and CRMRF 
placebo dose conditions, and a control condition with 
no intervention. The order of attendance was randomi-
zed. Fifteen of them additionally attended a fifth ses-
sion representing “PSWT high dose” condition to enable 
a comparison between the two EPAs. Attendance to 
PSWT condition was not randomized (not truly blinded) 
although they were only informed that it was another 
type of RF. The study was approved by the Health and 
Human Sciences Ethics Committee with Delegated Au-
thority of the University of Hertfordshire.

Apparatus. CRMRF device. The CRMRF at 448 kHz used 
was an INDIBA® device (Indiba S.A., Barcelona, Spain).

PSWT device. The PSWT at 27.12 MHz used was “a 
Bosch Ultramed device” (Robert Bosch GmbH, Gottin-
gen, Germany).

Other devices. Blood flow velocity, volume and inten-
sity (2 cm from the skin) were monitored using Doppler 
ultrasound and tissue extensibility using of sonoelas-
tography. Core temperature was measured with an in-
fra-red tympanic thermometer.

Experimental procedure and data acquisition. Parti-
cipants were asked to avoid food, beverages and stre-
nuous exercises before the sessions. A minimum gap of 
48 h was ensured between sessions. Similar times of the 
day were chosen for all sessions of a participant. Parti-
cipants acclimatized for 20 min. Blood flow and sonoe-
lastography measurements were performed pre- and 
post-intervention.

RF intervention. CRMRF treatment was delivered for 
15 min. For CRMRF low, the intensity was maintained at 
a sub/ minimally-thermal level throughout. For CRMRF 
placebo, the device output was turned off after the par-
ticipants reported thermal onset. For the control con-
dition, participants rested on the treatment plinth for 
15 min. The nearest available PSWT dose to the mean 
CRMRF high dose (42.37 W) used in this study was 47 
W. Hence, 47 W was delivered for 15 min.
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Data analysis. Ultrasound images and sonoelastogra-
phy were analysed using MATLAB.

All data were analysed using IBM SPSS Statistics. Group 
data were compared using either two-way repeated 
measures analysis of variance (ANOVA) or using the 
non-parametric alternative Friedman’s two-way ANOVA 
by ranks. Statistical significance was set at p≤.05.

RESULTS
All participants completed the treatments. Both types 
of interventions were well-tolerated, with no adverse 
events. Mean (SD) treatment doses, room temperatu-
re and humidity are reported in Table 1. The study was 
conducted in thermoneutral conditions.

Blood flow volume. The applied dose influenced the 
changes in blood flow volume (p=.003). At baseline the 
groups did not differ significantly, except between the 
control and placebo groups (p=.009). In the five group 

CRMRF high CRMRF low CRMRF placebo Control PSWT

RF dosage in Watts (W) 42.37 (4.64) 18.77 (3.82) 2.79 (1.23) 0 47

Room temperature (ºC) 25.12 (1.14) 25.53 (1.11) 2.79 (1.23) 2.79 (1.23) 24.30 (0.56)

Humidity (%) 41.21 (6.38) 41.06 (7.40) 39.68 (6.24) 41.79 (6.50) 32.70 (4.37)

Table 1. Mean (±SD) treatment doses received by the participants in the five experimental groups, 
and mean (±SD) room temperature and humidity during the experimental sessions.

Fig. 1. (a) The mean (±SD) deep blood flow volume responses 
showing the baseline and post-treatment data from all five groups. 
The PSWT group results are based on 15 participants, while the 
other four groups’ results are based on 17 participants. Statistically 
significant differences (at p≤05) when compared to the baseline are 
indicated by asterisks (*) above the error bars (Friedman’s two-way 
ANOVA). (b) Percentage change of the mean deep blood flow volume 
from baseline to post-treatment for all five groups. The PSWT group 
results are based on 15 participants, while the other four groups’ 
results are based on 17 participants.

analysis, similar result was obtained for the main effect 
(p<.001). The five groups were not significantly diffe-
rent at baseline (Figure 1)

Within the CRMRF high group, there was a substantial 
rise in blood flow volume from baseline to post-treat-
ment (p=.001). A significant increase, although less 
strong was noted also in the CRMRF low group (p=.006). 
No such changes were noted in the other three groups.

Blood flow intensity. In the four-group analysis, a 
significant main effect was found at post-treatment 
(p=.002). Within the CRMRF high group, there was a 
substantial rise in blood flow intensity from baseline to 
post-treatment (p=.001). No such changes were noted 
in the other four groups (Figure 2).

Other results. There were no significant main effects 
on blood flow velocity and tissue extensibility nor in 
core temperature, blood pressure or pulse rate under 
any test condition.

Fig. 2. (a) The mean (±SD) deep blood flow intensity responses 
showing the baseline and post-treatment data from all five groups. 
The PSWT group results are based on 15 participants, while the 
other four groups’ results are based on 17 participants. Statistically 
significant differences (at p≤05) when compared to the baseline are 
indicated by asterisks (*) above the error bars (Friedman’s two-way 
ANOVA). (b) Percentage change of the mean deep blood flow inten-
sity from baseline to post-treatment for all five groups. The PSWT 
group results are based on 15 participants, while the other four 
groups’ results are based on 17 participants.



DISCUSSION
There is insufficient evidence on the effects of RF be-
low the shortwave frequency band. Two recent reviews 
found no clinical studies on acute conditions for fre-
quencies below shortwave (23) and only a limited num-
ber on chronic conditions (26).

In the current study in terms of the mode of energy de-
livery, PSWT may not be directly comparable to CRMRF 
since the former is pulsed while the latter is continuous. 
Besides, PSWT is not known to cause extremely high 
thermophysiological responses. However, the compari-
sons have been made for the aforementioned reasons.

Past studies have suggested that the differences in 
blood flow responses secondary to electromagnetic 
field exposure are mainly due to the differences in their 
ability to penetrate tissues. RF-based EPAs are propo-
sed to be more penetrative and are anticipated to in-
fluence blood flow at various depths (9,12,16) compa-
red to low penetrative infrared radiation that increases 
cutaneous circulation (34,35).

The significant rise in deep blood flow volume and flow 
intensity due to the high-dose CRMRF might have been 
achieved with a potentially modest rise in tissue tem-
perature. This is further vindicated by the rise in blood 
flow volume even with the low-dose CRMRF where the 
rise in tissue temperature must have been minimal. This 
suggests that a substantial rise in tissue temperature 
may not be required for CRMRF to increase deep blood 
flow. Thus unlike SWT, CRMRF may be capable of increa-
sing blood flow at depth at substantially lower tempera-
tures. This suggests that CRMRF is potentially capable 
of inducing a sustained influence on the physiological 
processes relating to deep blood flow with mechanisms 
that are either thermal or non-thermal or both.

PSWT may lack any notable non-thermal effect on deep 
blood flow in absence of significant tissue heating. It 
appears that a low-dose CRMRF can potentially achie-
ve the same benefits more effectively than PSWT wi-
thout unduly raising the temperature. Thus the type of 
applied energy might also be critical beside the tempe-
rature change, in deciding the level of tissue response.

There were no significant effects on tissue extensibility, 
measurements were performed after the blood flow me-
asurements, thus any effect during or immediately after 
the intervention should have been missed. Besides, par-
ticipants were healthy adults. People with compromised 
tissue extensibility, or even asymptomatic with increa-
sed tone in their muscles could behave differently.

CONCLUSIONS
A high as well as low dose of CRMRF can significantly 
enhance blood flow volume at depth, while only the 
high dose can enhance both the volume and intensity 
of flow. An equivalent high dose of PSWT failed to show 
any impact on either parameter. Overall CRMRF induced 
a significantly more pronounced physiological response 
out of the two types of RF based EPAs. The deep blood 
flow velocity, extensibility of tissues, core temperature, 
blood pressure and pulse rate were not affected by ei-
ther type of RF treatment.

The more pronounced physiological effects of CRMRF in 
healthy participants compared to PSWT may be indica-
tive of its potentially greater clinical benefits.
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